Poly(Acrylic acid)–Based Hybrid Inorganic–Organic Electrolytes Membrane for Electrical Double Layer Capacitors Application

نویسندگان

  • Chiam-Wen Liew
  • Arshid Numan
  • Hsing-Lin Wang
چکیده

Nanocomposite polymer electrolyte membranes (NCPEMs) based on poly(acrylic acid)(PAA) and titania (TiO2) are prepared by a solution casting technique. The ionic conductivity of NCPEMs increases with the weight ratio of TiO2.The highest ionic conductivity of (8.36 ̆ 0.01) ˆ 10 ́4 S ̈ cm ́1 is obtained with addition of 6 wt % of TiO2 at ambient temperature. The complexation between PAA, LiTFSI and TiO2 is discussed in Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR) studies. Electrical double layer capacitors (EDLCs) are fabricated using the filler-free polymer electrolyte or the most conducting NCPEM and carbon-based electrodes. The electrochemical performances of fabricated EDLCs are studied through cyclic voltammetry (CV) and galvanostatic charge-discharge studies. EDLC comprising NCPEM shows the specific capacitance of 28.56 F ̈g ́1 (or equivalent to 29.54 mF ̈ cm ́2) with excellent electrochemical stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionic liquid incorporated polymer electrolytes for supercapacitor application

Recent advances in the study of ionic liquids based gel polymer electrolytes have been briefly reviewed in view of their electrochemical applications, particularly, their application as electrolytes in supercapacitors. The incorporation of ionic liquids in gel polymer electrolytes, instead of organic solvents like propylene carbonate, ethylene carbonate, etc., provide added effect in terms of t...

متن کامل

An overview of organic/inorganic membranes based on sulfonated poly ether ether ketone for application in proton exchange membrane fuel cells

Nowadays, proton exchange membrane fuel cells (PEMFCs) are the most promising green energy conversion devices for portable and stationary applications. Traditionally, these devices were based onperfluoro-sulfonic acid electrolytes membranes, given the commercial name Nafion. Nafion is the mostused electrolyte membrane till now; because of its high electrochemical properties su...

متن کامل

Effect of TiO2 Nanofiber Density on Organic-Inorganic Based Hybrid Solar Cells (RESEARCH NOTE)

Abstract In this work, a comparative study of hybrid solar cells based on P3HT and TiO2 nanofibers was accomplished. Electrospinning, a low cost production method for large area nanofibrous films, was employed to fabricate the organic-inorganic hybrid solar cells based on poly (3-hexylthiophene) and TiO2 nanofibers. The performance of the hybrid solar cells was analyzed for four density levels ...

متن کامل

Preparation and Characterization of Reduced Graphene Oxide Doped in Sol-Gel Derived Silica for Application in Electrochemical Double-Layer Capacitors

In this study, a new graphene ceramic composite (GCC) was prepared based on the reduced grapheneoxide (rGO) doped in sol-gel derived silica. The GCC was prepared by dispersing rGO nanosheets intothe sol-gel precursors containing methyl triethoxysilane, methanol and hydrochloric acid solution.During an acid catalyzed hydrolyze reaction and gelation proc...

متن کامل

Preparation and Characterization of Organic-Inorganic Hybrid Hydrogel Electrolyte Using Alkaline Solution

Organic-inorganic hybrid hydrogel electrolytes were prepared by mixing hydrotalcite, cross-linked potassium poly(acrylate) and 6 M KOH solution. The organicinorganic hybrid hydrogel electrolytes had high ionic conductivity (0.456–0.540 S cm) at 30 °C. Moreover, the mechanical strength of the hydrogel electrolytes was high enough to form a 2–3 mm thick freestanding membrane because of the reinfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016